If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2-4x-64=0
a = 15; b = -4; c = -64;
Δ = b2-4ac
Δ = -42-4·15·(-64)
Δ = 3856
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3856}=\sqrt{16*241}=\sqrt{16}*\sqrt{241}=4\sqrt{241}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{241}}{2*15}=\frac{4-4\sqrt{241}}{30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{241}}{2*15}=\frac{4+4\sqrt{241}}{30} $
| 1.4=c/6 | | 64=a/8 | | 0=x^2-21x+62 | | 15y^2=-2y+8 | | 1/2y=1/6 | | 4(5x+1)=-5(4x-3)-2x | | 6(5+4x)=5x-27 | | 6(x-1/3)=2(x+5) | | 4(6+6x)=-7x+24 | | 12-2y=-26 | | 1-5a=-6a | | -26+2x=-39x+9x | | 4r^2+r-8=0 | | 3(b+5)=9+5b | | 100=x+10 | | −2x+2=x−13 | | 2x+3(6x)=20 | | 3a+8=5a-2 | | 9k=2 | | (3y-1)(2y+1)=54 | | -25x=225 | | x^2-11x-77=0 | | 1/3(147+b)=89 | | 35+7b=6(1+6b) | | -4a=9 | | -a4=9 | | 10x-19=6x+6 | | 35+7b=6(1+6b | | 0.25(d+350)=237.5 | | 2=3(1/x-1/4) | | 3(4s+5)=158 | | Y=-6x^2-300x+1800 |